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Abstract: Strategies for optimising in vivo predictions from in vitro data on metabolic stability and CYP inhibition are discussed. Poten-
tial pitfalls and areas of inaccuracy are highlighted together with recommendations for best practice. The use of both hepatic microsomes 
and isolated hepatocytes for the assessment of metabolic stability is discussed in terms of scaling from the in vitro system up to whole 
liver. The importance of integrating metabolic stability data together with other drug pharmacokinetic characteristics (e.g., protein bind-
ing and red blood cell uptake) as well as blood flow are presented within the context of different liver models. The assessment of CYP 
inhibition potential requires in vitro data on the inhibitor potency either in the form of Ki (for reversible inhibition) or KI and kinact (for 
time-dependent inhibition). The integration of these in vitro parameters together with other pharmacokinetic information is essential for 
the in vivo prediction. While a qualitative assessment may be made from the I/Ki ratio, a number of additional victim drug and enzyme-
related parameters are required for quantitative prediction. Of particular importance is the parameter fmCYP (the fraction of the metabolic 
clearance of the victim drug that is catalyzed by the enzyme subject to the inhibition). Impact of other victim drug properties (e.g., frac-
tional importance of the intestine) and enzyme properties (e.g., kdeg for time-dependent inhibition) on the drug-drug interaction prediction 
is discussed. In addition, mechanisms by which false negatives and false positives may result from in vitro strategies are summarized. Fi-
nally perspectives for future application and improvements in these predictions strategies are outlined. 

Keywords: Clearance prediction, assessment of CYP inhibition potential, quantitative prediction of drug-drug interactions, in vitro-in vivo 
extrapolation. 

INTRODUCTION 

 Previous articles in this special issue on In vitro ADME/Tox 
profiling for Drug Discovery have discussed the advances in in 
vitro techniques to obtain drug kinetic parameters. This article dis-
cusses how to make optimal use of this information, indicates po-
tential pitfalls and areas of inaccuracy together with some recom-
mendations for best practice. Both metabolic stability and assess-
ment of CYP inhibition potential are discussed. Topics covered 
include - what in vivo information needs to be predicted, theoretical 
considerations for obtaining the necessary in vitro information i.e. 
its suitability for purpose, practical implications and databases of 
published literature illustrating application. 

 The principles of scaling in vitro parameters and modelling of 
CLint and inhibition effects are well accepted due to their sound 
kinetic basis and their validation, to varying degrees, using rat tis-
sue [1-3]. The use of this animal species, in contrast to human, al-
lows consistency in both genetic components and environmental 
conditions and hence ensures maximum comparability between the 
experimental conditions applicable to the in vivo and in vivo phases 
of the studies. Several challenges remain to our ability to fully in-
terpret human in vitro data and hence there remain uncertainties in 
our predictions despite our technical capabilities to readily generate 
in vitro parameters. This review summarises the current status of 
the methodology available for the use of in vitro systems for the 
prediction of human in vivo drug clearance and inhibition interac-
tion potential.  

ASSESSMENT OF METABOLIC STABILITY 

 There are two approaches available for the in vitro assessment 
of metabolic stability, the first involves measurement of the deple-
tion of drug concentrations and the second involves measurement of 
the formation of specific metabolites. Both are monitored over time 
to allow a linear rate to be determined. The former is more widely 
used as in many cases the full metabolic profile is not available for 
the drug under investigation or, if indeed it is, authentic standards 
of those metabolites are not. However as discussed below the theo 
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retical basis for extrapolation originates from metabolite formation 
kinetics and biochemical principles. 

 Both isolated hepatocytes and hepatic microsomes have been 
advocated as suitable sources of kinetic parameters, [4] from either 
metabolite formation (Vmax, Km and clearance) [5, 6] or drug sub-
strate depletion (clearance or half-life) [7, 8]. These terms are inter-
related in the following way to provide intrinsic clearance (CLint): 
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where Vmax and Km represents the metabolite formation parameters 
for a specific metabolic pathway (i) and V is incubation volume. 
The pharmacokinetic parameters associated with drug elimination 
in vivo are clearance and half-life. However for many drugs neither 
of these parameters provides a true metric for the efficiency of the 
drug elimination process. Clearance from plasma concentration 
time profiles (via an AUC determination) must be factored to pro-
vide the metabolic component (i.e. remove the renal or any other 
non metabolic contributions). The term metabolic or hepatic (as it is 
assumed that the liver represents the dominant organ of metabo-
lism) clearance, and its derivatives described below, are the best 
measures of drug elimination from an in vivo stance. Plasma half-
life is a secondary parameter reflecting both the distribution charac-
teristics as well as clearance of a drug. Therefore it is very limited 
value in providing a useful measure of drug elimination and as an in 
vivo correlate.  

Theoretical Considerations Pertinent to In Vitro Studies 

 From a biochemical perspective, CLint can be expressed in 
terms of the kinetic parameters of the one-site enzyme model de-
fined by Michaelis-Menten equation. The free (unbound to macro-
molecules) concentration of drug within the liver is assumed to 
equate with the drug concentration at the enzyme site and under 
therapeutic conditions rarely approaches the Km. Therefore linear 
conditions exist and the Michaelis-Menten equation reduces to Eq. 
1. 

 The single-site Michaelis-Menten kinetic approach does not 
always accommodate the kinetic features observed for certain reac-
tions [9]. A number of CYP3A4 and UGT substrates, for example, 
display kinetic behaviour that indicates the existence of and interac-
tion between several binding sites on the enzyme [10-13]. Atypical 



Prediction of Pharmacokinetic Parameters from In Vitro Data Current Drug Metabolism, 2008, Vol. 9, No. 9    941 

Michaelis-Menten kinetics are characterised by two particular types 
of rate-substrate concentration curves - sigmoidal, believed to result 
from autoactivation, and convex, resulting from substrate inhibition 
[14]. Models describing these kinetic behaviours are available and 
have been discussed in previous reviews [1, 9]. 

 It is important to address the practical problem of dealing with 
data that cannot be described by the Michaelis-Menten model with 
a view to making in vivo predictions, particularly as CYP3A4 is the 
major human cytochrome. Frequently these kinetic characteristics 
are regarded as solely a microsomal phenomenon. However, there 
are several reports in isolated hepatocytes supporting its in vivo 
importance [6, 15-17]. The initial steps of any in vitro-in vivo scal-
ing strategy require full description of the in vitro data prior to ab-
stracting useful parameter(s) for extrapolation. Thus the in vitro 
system kinetics needs to be characterized comprehensively, extend-
ing beyond the limits that may be observed in vivo. For substrate 
inhibition, a substantial underestimation of Vmax will occur by 
merely ignoring the high concentration data points and forcing a 
standard Michaelis-Menten model through the remaining lower 
substrate concentration data. Also Km would be poorly estimated. 
For a sigmoidal curve, there may be either an underestimation or 
overestimation of CLint if a hyperbolic curve is forced through the 
data and the parameters Vmax and Km are used to calculate CLint. 
How precisely the clearance estimate will be altered by the model 
misspecification will vary from case-to-case and will be dependent 
on the number and quality of the data points [9, 14]. 

 Atypical kinetics may impact on the use of substrate concentra-
tion depletion time profiles to obtain clearance values. This is usu-
ally carried out at one substrate concentration, often in the 1μM 
region, based on the rationale that this concentration should be well 
below the (unknown) Km value. If consideration is not given to the 
phenomenon of activation then underestimates of clearance will 
occur. For example, diazepam metabolite kinetics shows marked 
sigmoidicity and its microsomal half-life at 1 M is five times 
longer than at 100 M reflecting the nonactivated and fully acti-
vated clearance [14]. In contrast the phenomenon of substrate inhi-
bition per se is unlikely to be of consequence in vivo due to the high 
concentrations required. The introduction of CLmax as an alternative 
for CLint represents one attempt to introduce autoactivation into the 
in vitro-in vivo scaling strategy. Autoactivation is characterized by 
the absence of any clearance independent of substrate concentra-
tion; CLmax reflects clearance when the enzyme is fully activated 
[9]. 

 The need to incorporate the fraction unbound in microsome 
(fuinc) to obtain meaningful drug concentrations for the prediction 
of intrinsic clearance is widely accepted [18-20]. Recently, two 
equations based on drug lipophilicity have been developed for pre-
diction of fumic [21, 22] which avoid experimental determinations. 
The limitations of these empirical predictive tools and their appli-
cability for fumic predictions over a range of lipophilicity and micro-
somal protein concentrations have been addressed [23]. Analogous 
to applying a correction for microsomal drug binding to in vitro 
clearance and inhibition parameters, the fraction unbound in hepa-
tocyte incubations (fuhep) is also required for in vitro-in vivo ex-
trapolation [5, 24]. However, this need has yet to be broadly ap-
plied. The relationship between the extent of binding in microsomal 
and hepatocyte incubations has been used as an empirical tool for 
the prediction of fuhep directly from the drug lipophilicity metric or 
from a previously derived fumic value [25]. The use of these calcu-
lated unbound fractions, while far from precise in many cases, are 
preferable to ignoring this important phenomenon.  

QUANTITATIVE PREDICTION OF METABOLIC CLEAR-
ANCE 

 The general strategy adopted (Scheme 1) conceptually consists 
of four stages, yet in practical terms this amounts to two essential 
steps. The first step expresses the in vitro clearance parameter 

(CLint initially obtained by appropriate modelling of the in vitro 
data) in terms of total liver weight rather than the in vitro units of 
per million cells or per mg of microsomal protein. CLint is a pure 
measure of enzyme activity towards a drug. The second step incor-
porates physiological processes (such as hepatic blood flow or drug 
binding within the blood matrix) with the intrinsic metabolic stabil-
ity of the drug to provide a whole liver clearance parameter (CLh). 
Other clearance terms may be required in order to obtain total body 
clearance, such as renal or biliary excretion of unchanged drug [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. 

Step One, Scaling In Vitro Parameters 

 The output from an in vitro experiment should be the intrinsic 
clearance expressed as L per minute per milligram of microsomal 
protein (or per million cells). Hence the parameter will be linear not 
only with respect to time but with concentration of enzyme (as 
measured indirectly by either milligram of protein or hepatocellu-
larity). These units allow the intrinsic clearance term to be scaled to 
the whole liver in a convenient way as exemplified in the case of 
the hepatocytes using a hepatocellularity value per gram liver or per 
entire tissue weight. Commonly employed values for hepatocellu-
larity are very similar in human and rat (see Table 1). For microso-
mal scaling a similar procedure is carried out; however, it is impor-
tant to appreciate that the isolation of microsomes is not an efficient 
process. Therefore, the microsomal scaling factor (milligrams of 
microsomal protein per gram liver) is not equivalent to the micro-
somal protein content; rather it reflects the efficiency of the micro-
somal preparation. Values commonly used for rats and human tis-
sue are shown in Table 1. Recently a consensus paper on the value 
necessary for human microsomal scaling has been published [27]. 

 The use of other sub-cellular fractions, for example cytosol, 
will require distinct scaling factors. Table 1 lists values useful for 
cytosolic enzymes, such as sulphotransferase. To date the use of S9 
fraction has not been extensively explored. Also, for the use of in 
vitro data from extra hepatic tissues, tissue specific scaling factors 
will be necessary to achieve measures for the entire organ. Limited 
literature indicate that protein yield from kidneys is similar to that 
of liver whereas from intestinal mucosa microsomal scaling factors 
are substantially lower.  

 Whereas establishing a linear relationship between both time 
and enzyme concentration is a standard procedure for metabolite 
formation studies, it is less commonly explored for drug depletion. 
Particularly as in most laboratories generic protocols are employed 
in order to take advantage of high-throughput screening procedures. 
It has recently been demonstrated that linearity in terms of enzyme 
concentration (as reflected by microsomal protein concentration or 
hepatocellularity) is not always predictable and recommendations 
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have been made for appropriate enzyme concentrations for each 
system [7]. 

Step Two, Use of Liver Models 

 This section on the use of physiological based modelling for 
clearance prediction is limited to the liver as this organ is almost 
exclusively investigated. Scaled CLint terms need to be refined fur-
ther in order to allow comparison between in vitro and in vivo. Two 
considerations are important; first, plasma protein binding and red 
blood cell uptake (requiring measures of unbound plasma fraction 
and the blood plasma concentration ratio) and secondly, any possi-
ble blood flow limitations (becoming increasingly important as 
clearance increases). In order to achieve this it is necessary to use a 
physiologically-based pharmacokinetic model (so called liver mod-
els). By applying a liver model we can both isolate the in vivo in-
trinsic clearance term (a pure measure of drug metabolic instability) 
and model the in vivo hepatic clearance using in vitro input. 

 Comparison between in vivo and in vitro metabolism rates can 
be made both at the level of hepatic clearance and intrinsic clear-
ance. The latter has the advantage of having no numerical limits 
whereas the former will have an upper limit of hepatic blood flow 
(see Table 1 for values). In practise two approaches are adopted for 
in vitro and in vivo comparisons. For the Intrinsic Clearance ap-
proach, the in vivo AUC provides the value for total systemic clear-
ance and subsequently hepatic clearance. This is deconstructed in 
order to give an in vivo intrinsic clearance, which in turn can be 
compared with in the in vitro prediction. For the Hepatic Clearance 
approach, the in vitro intrinsic clearance is modelled together with 
other parameters (plasma protein binding, blood/plasma concentra-
tion ratio and blood flow) in order to provide a prediction of hepatic 
clearance and then, if required, total systemic clearance. These pre-
dicted clearances can then be compared with the corresponding in 
vivo parameter. The Hepatic Clearance approach is more widely 
carried out within the pharmaceutical industry however the Intrinsic 
Clearance approach has more appeal from an academic view. It is 
recommended that comparisons of drug metabolic instability are 
made by both approaches.  

 There are 3 established liver models: the ‘well-stirred’, parallel 
tube and dispersion models. The former model is most often used 
due to its mathematical simplicity rather than any superiority over 
the others, indeed it is the least ‘physiological’ in nature. To mimic 
the in vivo situation these models all assume that (1) the distribution 
into the liver is perfusion rate limited with no diffusion barriers, (2) 
only unbound drug crosses the cell membrane and occupies the 
enzyme site (the free drug hypothesis), and (3) there is a homoge-
nous distribution of metabolic enzymes in the liver [4]. However, 
different assumptions are made regarding the concentration gradient 

of drug within the liver: the ‘well-stirred’ model assumes that the 
hepatic drug concentration is equal to the outflow concentration, the 
parallel tube model assumes it is equal to the logarithmic mean of 
inflow and outflow concentration and the dispersion model assumes 
it shows axial dispersion analogous to packed-bed chemical reactor.  

 The relationships between intrinsic clearance, blood flow (Qh) 
and blood binding (fu) for the 3 models are shown in Eq. 2-4: 
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 A recent comprehensive comparison of the use of liver models 
to predict in vivo CLint, CLh and hepatic availability was carried out 
using rat in vitro data in both hepatocyte and microsomal prepara-
tions [28]. When CLint values from in vitro and in vivo are com-
pared it is clear that the simpler ‘well-stirred’ model gives the poor-
est predictions and there is nothing to distinguish the dispersion and 
parallel tube models. Considering the mathematical complexity of 
the dispersion model, it is recommended that the parallel tube 
model be used in preference to the ‘well-stirred’ model for the pre-
diction of in vivo CLint. To validate a principle, the emphasis on 
CLint is appropriate as this parameter provides the widest range of 
values (4 orders of magnitude) to allow in vitro-in vivo compari-
sons. However, often the aim of an in vitro study is to predict CLh 
and/or hepatic availability. For predictions of these parameters (us-
ing either hepatocyte or microsomal data) there is less difference 
between the particular models based on statistical estimates of bias 
and precision and the common practice of using the ‘well-stirred’ 
model would appear to be quite satisfactory. Certainly for screening 
procedures to identify new chemical entities with low CLh (or high 
availability) in vivo, the ‘well-stirred’ model can be incorporated 
into prediction algorithms without concern. 

Databases of Literature Reports of Prediction 

 The prototype system illustrating the utility of in vitro data for 
prediction of clearance in vivo is freshly isolated rat hepatocytes [4, 

Table 1. Key Parameters for Scaling In Vitro Data to Predict In Vivo Clearance. Values are shown for microsomes and hepatocytes from both rat and 
human. In addition, bias in predictions using physiologically based scaling factors are shown. 

 Rat Human
a
 Reference 

Microsomal recovery 
(mg protein /g liver) 

45 40 (13-54) [4, 18, 27, 87] 

Hepatocellularity 
(106 cells/g liver) 

120 99 (74-131) [4, 27] 

Cytosolic recovery 
(mg protein /g liver) 

91 (78-105) 80.7 (45-134) [88-96] 

QH 

mL/min/SRW or 
mL/min/kga 

25 20.7 (17.1-25) [18, 28, 97] 

Bias in CL predictionb 
Using hepatocytes 
Using microsomes 

 
1.4 
2.2 

 
4.5 

9.2 (well stirred model) 6.3 (parallel tube model) 

[5, 18, 28] 

aValues represent the weighted mean and the range is quoted in brackets. b Data shown represent fold under-prediction (using the well stirred liver model unless specified). 
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29, 30]. Using data from several laboratories, hepatocellularity was 
shown to provide excellent predictions of in vivo intrinsic clearance 
covering four orders of magnitude. The predictions show no bias 
and the majority are within a two-fold error margin (see Table 1). 
The success of this particular in vitro system lies in its intact cellu-
lar structure and full complement of drug metabolizing enzymes. 
Neither of these conditions exist in hepatic microsomes, the in vitro 
system most commonly used in vitro system for human tissue. 
However despite these inherent disadvantages rat studies have al-
lowed a similar validation of the use of microsomes albeit with a 
bias more evident than with hepatocytes (Table 1). 

 Recently it has become clear that although the simple scaling 
approach described above provides good clearance predictions in 
rat [28] it results in a high incidence of under-prediction for human 
pharmacokinetic parameters [5, 18]. Figs. (1 and 2) illustrate micro-
somal and hepatocyte data collated from several laboratories and 
the utility of adopting the standard, physiologically-based scaling 
strategy. In vitro intrinsic clearances have been corrected for other 
microsomal or cellular binding using experimentally determined 
values or predicted values based on logP. A strong correlation is 
evident (r  > 0.8) over a range of CLint covering four orders of mag-
nitude however there is a bias in the predictions resulting in a sys-
tematic under-prediction (Table 1). Many factors may contribute to 
this situation including inter-individual variability and the potential 
mismatch between liver donors providing tissue for the in vitro 
studies and subjects involved in the in vivo studies. How the 
choice/availability of donor tissue impacts on the apparent im-
provement in hepatocyte over microsomal predictions has yet to be 
clearly demonstrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Comparison between the observed in vivo human CLint and 

CLint predicted for a dataset of 52 drugs [18]. Predicted clearances were 
calculated from human hepatic microsomal data using a physiologically-
based scaling factor of 40mg protein/g liver. The solid line represents the 
line of unity, whereas the dashed line represents the average fold under-
prediction (9.2, using the well stirred liver model – Table 1). 
 

 The general observation of under-prediction from human tissue 
raises the question of whether we can do better? Over the last few 
years several approaches have been advocated or re-assessed as 
alternatives to the use of in vitro human microsomal data to predict 
human drug clearance. Several make use of preclinical animal data 
and include the use of allometry [31], the incorporation drug spe-
cific factors (derived from the ratio of in vivo/in vitro CLint in rats 
[32] and combinations of these together with in vitro human micro-
somal data [33]. In addition some investigators have suggested the 
possibility of empirical scaling (based on regression analysis from a 

historical data base) while others propose ignoring drug binding to 
plasma when applying a liver model. The basis for abandoning the 
free drug hypothesis is nonspecific binding within the microsomal 
matrix and hence the parameters describing the two binding proc-
esses may cancel out when a liver model is applied [34]. 

 From a comprehensive comparison of all the above approaches 
it was concluded [18] that from the various alternatives to physio-
logically-based scaling of in vitro data available, only the empirical 
scaling approach removes bias and maintains precision. Thus an 
empirical scaling factor of 360 mg protein/g liver (9 times the 
physiologically-based scaling factor derived from microsomal re-
covery) has been proposed as a pragmatic solution to under-
prediction. A scientific rationale is now required to support this 
proposal and to assure routine, reliable prediction of human clear-
ance. There is a need to incorporate inter-liver variability into pre-
diction strategies in order to account for the lack of comparability 
between tissue donors and healthy volunteers. Practically this can 
be achieved through the inclusion of internal standard of reference 
drugs in all incubation sets. If reference drugs are selected on the 
basis of well characterised in vivo parameters then novel in vitro 
data can be both ranked to these internal standards and normalised 
to in vivo activity empirically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Comparison between observed in vivo human CLint and CLint 

predicted using human cryopreserved hepatocytes for a dataset of 37 

substrates [5]. The solid line represents the line of unity, whereas the 
dashed line represents the average fold under-prediction (4.5, using the well 
stirred liver model – Table 1). Symbols denote sources of data [5]. 

ASSESSMENT OF CYP INHIBITION POTENTIAL 

 The use of in vitro data to delineate inhibition of CYP-mediated 
drug metabolism and hence identify potential serious drug-drug 
interactions (DDIs) in humans is widespread [35-42]. Over recent 
years, substantial technological advances have been made in the 
conduct of in vitro studies in terms of automation and generic pro-
tocols. However, there is still a lack of confidence in outcome, in 
particular in regards to false negative and positive predictions. The 
area is complicated by the existence of two major mechanisms re-
sponsible for inhibition of drug metabolism – reversible competi-
tive inhibition and time-dependent (mechanism-based) inhibition. 

 The most common in vivo metric used to assess DDIs is the 
change in area under the plasma concentration time curve (AUC) of 
the victim drug following multiple dosing of an inhibitor relative to 
the control state [37, 38, 43, 44]. The AUC is the most reliable pa-
rameter as it inversely reflects clearance. It is assumed that the sec-
ond drug (putative inhibitor or perpetrator) has reached steady state 
by the second phase of the study. Often the change in the clearance 
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is related to the average steady state concentration of inhibitor dur-
ing the dosing interval [36, 45]. In contrast to a time-averaged 
value, certain simulation programmes (for example Simcyp ) can 
incorporate the time course of the inhibitor concentration and hence 
generate a temporal profile of the inhibition process [20]. This is a 
valuable option when dealing with reversible inhibition mecha-
nisms but it is less critical for time-dependent inhibition where the 
reduced state of activity is relatively stable, at least during the dos-
ing interval period of study. 

 The prediction of DDIs occurring via inhibition of cytochrome 
P450 can be envisaged as a number of stages, similar to that dis-
cussed for clearance (Scheme 2). Data from the in vitro experiment 
is first modelled using traditional biochemical models. The CLint of 
substrate is reduced by a factor related to the inhibitor concentration 
available to the enzyme [I] and the inhibition constant, Ki (Eq. 5, 
where subscript I represents the clearance in the presence of inhibi-
tor). The distinction between competitive and non-competitive in-
hibition mechanisms is not relevant when the substrate concentra-
tion is much lower than the Km value, the commonly encountered in 
vivo situation that results in linear kinetics.  

CLint, I = 

i

tin

[I]/K1

CL

+

                                     (5) 

 This allows an in vitro ranking to be made provided that infor-
mation from pharmacokinetic studies on circulation concentration 
of inhibitor is available, in addition to the in vitro inhibition data. 
This I/Ki rank order across different P450 enzymes helps in priori-
tising of the in vivo assessment, starting with the P450 with largest 
I/Ki and therefore strongest inhibition potential [40, 46]. This basic 
relationship between the AUC ratio and [I]/Ki, allows predictions to 
be categorized into four zones: true positives (AUC ratio>2, [I]/Ki 

>1), true negatives (AUC ratio<2, [I]/Ki <1), false positives (AUC 
ratio<2, [I]/Ki >1), or false negatives (AUC ratio>2, [I]/Ki <1) [38, 
44]. In the subsequent steps the data are modelled to predict an 
interaction for a particular victim drug. At this stage, specific input 
of the victim drug-related parameters (e.g., fmCYP, FG) and the in-
hibited enzyme (e.g., kdeg), is required to allow the final prediction. 
Following the full strategy allows quantitative prediction; alterna-
tively the strategy may be stopped after the second step and in vitro 
ranking used to qualitatively zone the inhibition information (see 
above).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2 

Qualitative Zoning of Reversible Drug-Drug Interactions 

 In recent years there has been much interest in the use of the 
ratio of estimated inhibitor concentration in vivo [I] and in vitro 
potency (defined by Ki) to describe the degree of in vivo interaction 
between two drugs [35, 37-39, 41, 42, 47]. The accurate determina-
tion of [I] is problematic as direct measurement is not possible and 

there is no generally accepted approach for the extrapolation of 
inhibitor concentration in the plasma to that at the enzyme site. A 
number of predictions of the drug-drug interactions have been at-
tempted with varying degrees of success using a range of [I] values 
as a surrogate, including the average plasma total or unbound con-
centration or hepatic input concentration of the inhibitor [38, 48]. 
The hepatic input concentration combines the circulating systemic 
plasma concentration and the concentration of an inhibitor occur-
ring during the absorption phase. 

 Comprehensive analysis of 193 drug-drug interactions involv-
ing inhibition of CYP2C9, CYP2D6 and CYP3A4 [38] has shown 
that hepatic input concentration was the most successful as a surro-
gate for [I] for categorising CYP inhibitors and for identifying true 
negative DDIs. False negative predictions were eliminated using 
this approach; however, significant number of false positives was 
evident and most true positives were markedly over-predicted (Fig. 
3). Although the [I]/Ki ratio provides a useful tool in qualitative 
zoning and ranking of putative inhibitors [38, 40], this approach 
should be considered as an initial discriminating screen as it is em-
pirical and requires subsequent mechanistic studies for comprehen-
sive evaluation of a positive result [1]. This simple generic ap-
proach ignores the substrate- or inhibitor-specific properties that 
contribute to a number of over-predictions of true positive interac-
tions. For example, in order to avoid false negative prediction and 
obtain the largest hepatic input concentration, maximum value of ka 
(0.1 min-1) was suggested as useful, assuming the gastric emptying 
is the rate limiting step for absorption [38, 48]. Recent studies by 
Brown et al. [47] have shown the impact of appropriate ka values 
for 10 inhibitors for CYP2C9, CYP2D6 and CYP3A4, including 
azoles, quinidine, fluoxetine, fluvoxamine etc. Refinement of this 
parameter resulted in the ka values 2- to 14-fold lower than the ini-
tial estimates and reduction of the relative contribution of the ab-
sorption term in comparison to the systemic term to the hepatic 
input concentration up to 13-fold in case of itraconazole. In addi-
tion, the ka value may vary with the dose of inhibitor and the food 
intake (e.g., ketoconazole) [49], affecting the estimate of the inhibi-
tor concentration and consequently the predicted AUC ratio.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Qualitative zoning for the prediction of drug-drug interactions 

involving CYP inhibition. The curve represents the theoretical curve based 
on the relationship AUC ratio = 1+ [I]/Ki, where [I] represents hepatic input 
concentration. F- represents false negative, T-, true negative, F+, false posi-
tive and T+, true positive DDI prediction.  represents CYP3A4, , 
CYP2D6 and  CYP2C9 DDIs [38]. 

Time-Dependent Drug-Drug Interactions 

 Irreversible effects, often referred to as mechanism-based or 
time-dependent inhibition interactions, involve the metabolism of 
an inhibitor (i.e., require NADPH) to a reactive metabolite, which 
inactivates the catalysing enzyme in a concentration- and time-
dependent manner. Traditionally two major kinetic parameters are 
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used to characterize time-dependent inhibition interactions (TDI): 
kinact and Ki, the maximal inactivation rate constant and the inhibitor 
concentration leading to 50% of kinact, respectively [50]. The gen-
eral approach to TDI in vitro risk assessment is based on the use of 
the kinact/KI ratio as an indicator of in vitro potency. Experimentally 
the two-step dilution method, although most commonly used [51-
53], varies significantly in the design across the studies, from the 
CYP3A4 probes used (midazolam or testosterone), probe concen-
tration (from below the Km to the concentrations equivalent to 
Vmax), pre-incubation to incubation time ratio to the data analysis 
method employed; all of which may affect the estimates of inhibitor 
potency [36, 54]. Ideally, pre-incubation to incubation time ratio 
should be at least >1, dilution factor from the pre-incubation to the 
incubation stage 1:10 should be applied to reduce the occurrence of 
competitive inhibition; in addition the use of high substrate concen-
trations (equivalent to Vmax) and nonlinear regression analysis are 
recommended for obtaining the kinact and KI parameters. In addition, 
this approach assumes that the inhibitor concentration in the final 
incubation is negligible and therefore the rate of metabolism of a 
probe substrate represents the remaining enzyme activity; this may 
not be correct depending on the conditions mentioned above [55, 
56]. 

 Recently, the use of IC50 reduction over various pre-incubation 
times has received attention [39], as a potential alternative approach 
to the two-step dilution method. Although rapid, the application of 
this method is limited, in particular for inhibitors showing high 
potency for reversible inhibition that may obscure the time-
dependent effect. In addition, significant depletion of an inhibitor 
over the pre-incubation time will result in a lack of significant de-
crease in the IC50 and a false negative result for a potent TDI. A 
third possible approach involves the use of the progress curve to 
monitor time-dependent inhibition [57]. This is the least explored 
method yet potentially it may offer solution to the limitations out-
lined above. It allows measurement of a probe substrate metabolism 
independently of the metabolism of an inhibitor. Wimalasena and 
Haines [58] have reported high reproducibility of the in vitro pa-
rameters obtained by this method in comparison to the two-step 
dilution assay. In particular, this method may be useful for investi-
gation of potent inactivating inhibitors (e.g., mibefradil). 

QUANTITATIVE PREDICTION OF DRUG-DRUG INTER-
ACTIONS  

 Consideration of a number of factors, including existence of 
more than one metabolic/elimination pathway [36, 40, 47, 59], im-
pact of multisite kinetics for CYP3A enzyme [1, 37], contribution 
of the intestinal inhibition [35, 39, 60, 61], impact of enzyme prop-
erties [36] and the role of multiple inhibitors and mechanisms [62, 
63] is required in order to progress towards a quantitative basis. The 
impact of these factors on the magnitude of the predicted DDI is 
discussed in the following sections. 

 The full algorithm for quantitative prediction of AUC in the 
presence and absence of the inhibitor after multiple oral dosing is 
shown in equations 6 and 7 for reversible and irreversible inhibition 
interactions, respectively [38, 41, 60]: 
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where Ij is the estimated unbound inhibitor concentration (either the 
average systemic plasma concentration after repeated oral admini-
stration ([I]av), or the maximum hepatic input concentration ([I]in) 
[38, 48], Ki,j, is the particular inhibition constant, fmCYPi represents 
the fraction of a substrate drug metabolised by the inhibited path-
way via a particular P450 enzyme, (1- fmCYPi) represents clearance 
via other P450 enzymes and/or renal clearance; the terms i and j 
indicate the potential to incorporate existence of multiple enzymes 

and inhibitors, respectively. FG
’ and FG represent the intestinal wall 

availability in the presence and absence of the inhibitor, respec-
tively. 

 An analogous relationship exists for irreversible inactivation, 
where the model also incorporates parameters to describe in vitro 
inactivation and in vivo enzyme degradation rate constant: 
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where kinact,j represents the maximal inactivation rate constant, KI, j 
the inhibitor concentration at 50% of kinact,j and kdeg the endogenous 
degradation rate constant of the enzyme [36, 61]. In addition to 
inhibition by multiple inhibitors, the model can easily be extended 
to accommodate the inhibition via different inhibition mechanisms 
(reversible and time-dependent) [41, 62]. 

Impact of Parallel Elimination Pathways  

 The most sensitive substrate-related parameter in the DDI pre-
diction model is fmCYPi, representing the fraction of the metabolic 
clearance of the victim that is catalysed by the enzyme subject to 
inhibition [37, 47, 59, 64]; in the qualitative analysis fmCYP is as-
sumed to be one. 

 Fig. (4) shows the importance of the introduction of the fmCYP 
term in the DDI prediction model for reversible inhibition. Even 
minor changes in the fmCYP value (e.g., from 1 to 0.98) alter predic-
tion accuracy significantly, as was illustrated in recent studies [47, 
59]. The inhibitory effect, i.e. the change in the AUC, decreases 
progressively with the decreasing contribution of the enzyme of 
interest to the overall elimination of a substrate. For victim drugs 
where enzyme contributes less than 50% to the overall elimination 
the AUC ratio will not exceed 2. It is clear that fmCYP is of equal 
importance to the I/Ki ratio, as in some circumstances substantial 
increases in the latter parameter will reduce no further AUC change 
because of the limitation of the fmCYP [36, 47, 59]. The systematic 
analysis of this parameters showed that incorporation of fmCYP re-
duced significantly the extent of over-predictions of true positives 
and corrected several false positive predictions. The importance of 
fmCYP in the DDI prediction model was confirmed further in the 
extensive analysis of 115 in vivo DDI studies for CYP2C9, 
CYP2D6 and CYP3A4 [45], where the incorporation of parallel 
pathways of substrate elimination with the in vitro inhibi- 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Three-dimensional surface for the relationship between the AUC 
ratio, the [I]/Ki and fmCYP2D6 for 44 drug-drug interaction studies involving 
CYP2D6 [59].  
tion data obtained under optimal standardized conditions substan-
tially improved the prediction accuracy (Fig. 5).  
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Table 2. Estimated fmCYP3A4 values for 28 CYP3A4 Substrates. Con-
tribution of renal clearance or metabolism via other CYP en-
zymes is indicated. 

Victim drug Estimated fmCYP3A4 Reference 

Alprazolama 0.8 [46] 

Atorvastatin 0.77 unpublished data 

Buspirone 0.99 [35] 

Carbamazepine 0.6 [35] 

Cerivastatinb 0.39 [36] 

Cisapride 0.95 [35] 

Cyclosporine 0.71 [35] 

Felodipine 0.81 [46] 

Loratadine 0.6 [35] 

Loperamideb 0.53 [61] 

Lovastatin  0.90 [85] 

Midazolame 0.94 [46] 

Nifedipine 0.71 [46] 

Nitrazepam 0.6 [35] 

Pimozidec 0.4 [35] 

Pioglitazoneb 0.30 [61] 

Pravastatind 0.31 [61] 

Quinidinea 0.76 [46] 

Repaglinideb 0.49 [61] 

Rifabutin 0.9 [36] 

Sildenafil 0.9 unpublished data 

Simvastatin 0.99 [46] 

Tacrolimus 0.99 [36] 

Terfenadine 0.74 [35] 

Trazodone 0.35 unpublished data 

Triazolam 0.92 [46] 

Zolpidem 0.6 unpublished data 

Zopiclone 0.95 [61] 

aSignificant renal clearance. bCYP2C8 substrates. cCYP2D6 substrate. dTransporter 
substrate. e N-glucuronidation 

 A number of approaches can be employed to estimate fmCYP 
value. The most unequivocal method is based on the comparison of 
phenotyping data in extensive and poor metabolisers as shown for 
CYP2D6 [59]. A good alternative to this approach is ‘pheno-
copying’ based on the difference between the urinary recovery of 
metabolites in the presence and absence of a selective inhibitor 
(e.g., tolbutamide in the presence of sulphaphenazole as an inhibi-
tor). CYP3A4 is the most problematic enzyme and the combined 
information on the urinary recovery of metabolites, biliary excre-
tion and the recovery of unchanged drug has been used recently 
[36, 37, 47]. Table 2 shows the fmCYP3A4 estimates for 28 different 
drugs, ranging from 0.31 to 0.99 in case of pravastatin and buspi-
rone, respectively. Recent study by Youdim et al. [42] has reported 
the use of in vitro fmCYP estimates for the prediction of a range of 
ketoconazole DDIs. However, cautious interpretation of this in vitro 
approach is required due to the limited number of clearance proc-
esses (i.e., CYP mediated) measured and lack of information on the 
potential contribution of renal clearance to drug elimination. 

Prediction of Time-Dependent Drug-Drug Interactions  

 In contrast to reversible inhibition, enzyme activity lost from 
time-dependent (mechanism-based) inhibition can only be restored 
by synthesis of a new enzyme. The rate of change of active enzyme 
concentration is determined by the equilibrium between the rates of 
de novo synthesis and degradation of the enzyme. Previous predic-
tions of TDI [52, 61] used CYP3A4 degradation half-life estimates 
(t1/2deg) obtained in either rat or Caco-2 cells [65], resulting in t1/2deg 
of 14-35 hrs. Recently, the estimates of human CYP3A4 kdeg from 
both induction studies or from in vitro investigations in liver slices 
have been collated [36, 54]. The estimated decay of CYP3A4 activ-
ity is 2-fold longer in comparison to most other cytochrome P450 
enzymes [54] but comparable to CYP2D6 [66, 67]. The differential 
degradation half-lives reported for CYP3A4 and CYP3A5 in vitro 
(79 vs. 35 h, respectively) [66] and the lesser susceptibility to inhi-
bition observed for CYP3A5 [68] may contribute to the extent of 
inter-individual variability observed in the magnitude of interac-
tions.  

 Venkatakrishnan and Obach [67] have indicated the importance 
of accurate enzyme degradation estimates for the prediction of 
CYP2D6 inactivation by paroxetine; a recent comparable study was 
reported for CYP3A4 [36]. The impact of inter-individual variabil-
ity of human CYP3A4 t1/2deg (20-146 hrs) on the assessment of TDI 
potential was assessed in conjunction with fmCYP3A4 considering 
their impact on the DDI prediction accuracy [47, 59, 64]. The sensi-
tivity of the predicted DDI to a differential CYP3A4 degradation 
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Fig. (5). Relationship between predicted and observed AUC ratios for reversible drug-drug interactions. Predicted AUC ratios obtained using the aver-
age systemic total drug plasma concentration, standardised in vitro data and incorporating fmCYP for CYP2C9 ( ), CYP2D6 ( ) and CYP3A4 ( ) in the 
drug-drug interaction database from [59] (A), and the corresponding studies in the database from Brown et al. [45] (B). The grey boxes shown relate to potent, 
moderate and weak DDI using the AUC ratio criteria [43]. 
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rate was dependent on fmCYP3A4. The prediction accuracy was very 
sensitive to CYP3A4 degradation rate for substrates mainly elimi-
nated by this enzyme (fmCYP3A4  0.9), minimal effects are ob-
served when CYP3A4 contributes less than 50% to the overall 
elimination in cases when the parallel elimination pathway is not 
subject to inhibition. The study also indicated the suitability of the 
mean CYP3A4 t1/2deg of 3 days in the assessment of time-dependent 
interaction potential. 

 The recovery half-life and degradation rate constant of 
CYP3A4 in the intestine can be estimated from grapefruit juice 
interaction data. The intestinal CYP3A4 kdeg of 0.00048 min-1 is 
reported resulting in the estimated CYP3A4 recovery half-life of 
approximately 24 h ([39], Gertz et al. submitted for publication], 
shorter than hepatic estimates.  

Impact of the Intestinal Metabolic Interactions 

 Another confounding factor in the prediction of DDI is the pos-
sibility of inhibition at the level of the gut wall for some CYP3A 
drugs [69-72]. The contribution of an intestinal interaction is incor-
porated into the prediction equation based on the hepatic enzyme 
interaction as the FG ratio; this approach is applicable for both re-
versible and irreversible inhibition interactions, as shown in the 
equations 6 and 7, respectively [40, 41, 61, 73]. So far, the incorpo-
ration of the intestinal inhibition into the DDI prediction strategy 
has shown variable success [35, 36, 40, 45, 61]. Initial investiga-
tions into incorporating maximal intestinal inhibition (1/FG) did not 
improve prediction precision and accuracy of a range of reversible 
CYP3A DDIs [45]. In the case of time-dependent inhibition, 
Galetin et al. [36] have investigated the impact of the intestinal 
inhibition on 9 victim drugs (28 DDIs), with FG ranging from 0.21 
to 0.98 in case of buspirone and alprazolam, respectively. Although 
the use of the 1/FG approach minimized the number of false nega-
tive predictions in this dataset, the number of predictions within 2-
fold of in vivo value was reduced by 20%. Prediction of TDIs with 
midazolam, triazolam and nifedipine as victim drugs was generally 
improved by the incorporation of an intestinal interaction, whereas 
pronounced over-predictions were observed for the interactions 
with cyclosporine and buspirone (Fig. 6). This is in agreement with 
a reversible DDIs database, where a similar trend was observed for 
atorvastatin and tacrolimus interactions [45]. Other studies have 
incorporated intestinal inhibition in the form of the predicted FG 

ratio rather than assuming maximal inhibition [35, 40]. Obach et al. 
[40] have reported an improvement in the prediction precision and 
accuracy for a range of reversible CYP3A4 DDIs and also time-
dependent DDIs [39] using unbound hepatic input concentration; 
however, when total hepatic input concentration was used as a sur-
rogate for inhibitor concentration, the impact of intestinal inhibition 
was minor. Differences in the success of the prediction cannot be 
associated only with the incorporation of the intestinal contribution, 
as other parameters were inconsistent between the datasets (e.g., 
fmCYP3A4, use of average or hepatic input concentrations, enzyme 
degradation constants) for which the model is particularly sensitive 
[47, 64].  

 A potential for significant interaction in the intestine is associ-
ated with the relative ratio of intestinal concentration of the inhibi-
tor to its estimated potency, i.e., IG/Ki. Impact of physiological vari-
ability in enterocytic blood flow, inhibitor (IG/Ki) and victim drug 
properties (control FG) on the FG ratio has been reviewed recently 
[60]. The FG of a victim drug is an important determinant of the 
interaction magnitude. A minimal 50% intestinal extraction is indi-
cated as an appropriate cut off value for a potential significant in-
teraction, irrespective of the potency of the inhibitor and its inhibi-
tion mechanism [60]. CYP3A substrates with high extent of intesti-
nal first-pass extraction (>75%) are particularly sensitive to any 
inaccuracy in the initial FG estimates. Different methods to estimate 
the extent of intestinal extraction have been discussed recently [73]. 
For the drugs with intestinal extraction  50% (e.g., midazolam), 
the maximal value of the FG ratio is approaching 2 even in the case 
of complete inhibition. This suggests that the contribution of the 
intestinal inhibition interaction is likely to be relatively minor; 
however, for some DDIs the 2-fold increase in the prediction may 
eliminate false-negatives.  

Importance of Multiple Inhibitors and Multiple Inhibition 
Mechanisms 

 The contribution of multiple inhibitors (or metabolites) and/or 
the consequence of multiple inhibition mechanisms is rarely in-
cluded in DDI assessment [36, 41, 74]. When two inhibitors act on 
the same enzyme and via the same mechanism, the effect of the 
least potent inhibitor in the prediction model is minor, in particular 
if the relative ratio of I/Ki of two inhibitors is > 100-fold [62]. 
Therefore, in such cases it would be sufficient to include only the 
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Fig. (6). Relationship between predicted and observed AUC ratios for time-dependent interactions.  

A. Predictions of 28 TDI using Eq. 7 applying the average unbound plasma concentration of the inhibitor, corresponding fmCYP3A4 and CYP3A4 t1/2deg of 3 days 
and no intestinal interaction. Interactions identified according to the substrates:  represents midazolam,  triazolam,  alprazolam,  buspirone,  
quinidine,  simvastatin,  cyclosporine,  felodipine and  nifedipine. B. Effect of incorporating the maximal intestinal inhibition (FG

’=1) in the predic-
tions; all other conditions and symbols are as in panel A. The solid line represents line of unity and dashed lines represent the 2-fold limit in prediction accu-
racy. The shaded areas correspond to the true negative and positive time-dependent interactions defined by the 2-fold increase in the AUC; F+ and F- represent 
false positive and false negative predictions, respectively [36]. 
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more potent inhibitor in the prediction model. There is a perception 
that a greater combined effect is expected for inhibitors that act via 
different pathways (P450s) or independent mechanisms (e.g., re-
versible and irreversible as in case of gemfibrozil and its acyl-
glucuronide). However, Hinton et al. [62] has shown that in cases 
when the contribution of the inhibited second enzyme is less than 
50% (e.g., CYP3A in case of repaglinide), its contribution to the 
overall magnitude of the DDI observed will be relatively minor. 
However, inhibition of one P450 enzyme by a potent inhibitor (e.g., 
CYP2C8 by gemfibrozil glucuronide) may alter the fmCYP balance 
towards a different P450 (e.g., CYP3A), which may explain the 
substantial inhibition effect observed in the itraconazole-
gemfibrozil interaction with repaglinide [75] and loperamide [76], 
in contrast to minor interaction when only itraconazole is adminis-
tered with repaglinide. In addition, disease- and age-specific differ-
ences in demography and differential metabolic activity of poly-
morphic enzymes will contribute to the inter-individual variability 
in the magnitude of DDIs with multiple inhibitors/inhibition 
mechanisms [41]. 

 A number of recent studies [77-80] have indicated the impor-
tance of the hepatic uptake transporter OATP1B1 on the disposition 
and efficacy of a wide range of therapeutically used drugs, includ-
ing statins, fexofenadine and repaglinide [63, 81-84]. Therefore, 
inhibition of the hepatic uptake of victim drugs may contribute 
towards the magnitude of observed DDI. Prediction of DDIs occur-
ring via hepatic transporter proteins is currently based on an ap-
proach analogous to the basic metabolic model using the [I]/Ki ratio 
[63]. This approach assumes that transport occurs exclusively via 
the particular transport protein subject to inhibition and that no 
passive uptake occurs and this approach is currently recommended 
by FDA in the ranking of potential transporter-mediated DDIs [46]. 
A recent study by Hinton et al. [62] proposed a refinement of this 
basic transporter model with the incorporation of a substrate-
specific property. This additional term, the fraction of drug trans-
ported by a particular transporter protein (ft), is analogous to fmCYP 
in the metabolic prediction model and allows differential contribu-
tion of the transporter of interest to the overall uptake. The impact 
of this victim drug-specific parameter on the prediction of trans-
porter-related DDIs illustrates that even minor changes in ft (i.e., 
changes in transporter contribution from 100 to 80%) have a sig-
nificant effect on the predicted AUC ratio in a similar manner to the 
effect of fmCYP on the metabolic models. However, estimation of ft 
value is not straightforward. One approach is to estimate the contri-
bution of each transporter to the total hepatic uptake in vitro using a 
relative activity approach [63, 85]. Alternatively, the OATP1B1 
pharmacogenetic studies allowing comparison of AUC in trans-
porter variants may represent a potentially useful approach to esti-
mate ft, analogous to estimation of fmCYP2D6 from poor and exten-
sive metabolisers [59]. 

Mechanisms for False Negatives and False Positives  

 As a result of the analysis described above, together with other 
publications in this area, the potential mechanisms for falsely cate-
gorising a potential DDI based on in vitro data can be summarised 
as follows: 

 False negatives. This may result from unrecognised TDI inhi-
bition mechanism as well as an unrecognised contribution from 
inhibitory metabolites. A third potential source of false negatives 
would be the existence of transporter involvement which may lead 
to either incorrect values for Ki or the inhibitor concentration avail-
able to the enzyme.  

 False positives. The most common mechanism for this is likely 
to be an incorrect assignment of the fmCYP value. As this is a very 
difficult parameter to estimate this is undoubtedly a very common 
shortcoming. This explanation would also explain some of the in-
consistencies in different analyses in the literature of the same in 
vivo data.  

 False negatives and false positives. In addition there are some 
mechanisms, which may result in either a false positive or negative 
conclusion. This would include inhibition of CYP3A4 when the Ki 
values are substantially influenced by multisite binding, therefore 
the possibility of too high or too low Ki value can arise. Similarly 
the involvement of transporters may create an inhibitor concentra-
tion within the cell that differs from that in the medium (plasma) 
and the resulting effects may not be intuitive. 

PERSPECTIVES FOR FUTURE APPLICATION AND IM-

PROVEMENT OF PREDICTION STRATEGIES 

 There are now several independent demonstrations of good 
correlations in the literature for both, prediction of clearance and 
DDI potential from both microsomes and hepatocytes. In the case 
of clearance prediction the value obtained is an absolute value; 
therefore there is a clear concern over the availability of good donor 
tissue and whether this is representative of the in vivo case being 
predicted. In contrast to clearance, DDI prediction involves relative 
values, which in theory is less demanding; however, the algorithms 
involved are multi-factorial and dealing with various parameters is 
often of uncertain precision. In the literature it is clear that there is 
inconsistency over the relative importance and the value of certain 
key parameters. Unfortunately there is a large subjective element in 
the use of these algorithms hence the author’s opinion is paramount 
and is not always supported by sufficient documentation. Hence the 
uncertainty over which [I] is appropriate (both theoretically and 
pragmatically) for successful DDI predictions. While substantial 
advances have been made in the ease of generation of in vitro pa-
rameters, fuelled by the need for high throughput procedures and 
the general acceptance of generic protocols, these modelling aspects 
have received much less attention. However, the realisation that in 
vitro data per se is of limited predictive value is becoming more 
widely appreciated. The availability of simulation programmes (e.g. 
Simcyp®) is assisting the better use of in vitro data for prediction 
purposes. 

 Current trends in the type of new chemical entities under devel-
opment as new drugs have necessitated a broadening of the scope of 
in vitro systems, and hence prediction strategies. In terms of meta-
bolic stability it is now necessary to expand beyond cytochrome 
P450 and incorporate Phase II reactions as well as possibility of 
transporter uptake. The latter can be the rate limiting step in the 
hepatic clearance process [86]. Also the proteins responsible for 
these clearance processes are expressed extrahepatically and hence 
prediction strategies need to be expanded, e.g. to include extrahe-
patic metabolism, particularly in the gut and in the kidney, incorpo-
rating not only P450, but also UGT and SULT enzymes. In the 
commonly used liver models the term intrinsic clearance relies on 
the fact that clearance occurs via a number of parallel (usually 
metabolic) processes hence individual clearance terms are additive. 
With the involvement of transporters we have a hepatic clearance 
involving sequential processes rather than parallel ones and this 
may present some challenges for the future. It seems likely that the 
use of hepatocytes will increase to allow at least simultaneous 
measurement of these various processes and account for their spa-
tial arrangement. However, the incorporation of the role of trans-
porters is severely limited by the lack of information on the expres-
sion levels in the various tissues of the body and appropriate scaling 
factors. A combined physiologically-based model incorporating 
both the hepatic uptake transporter and metabolic pathways in a 
sequential manner would represent the most comprehensive predic-
tion tool and the need for such refinement is becoming increasingly 
evident. 
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